DEVELOPING A NEW DRUG DEVELOPMENT PARADIGM
RESPONDING TO THE CHALLENGE OF CER AND RE IN THE US AND EUROPE
OVERALL PROCESS OF THE CMTP / OHE STUDY

Current Drug Development Paradigm
In US and Europe

Payer Perspectives
In US and Europe

Defining Future CER Environment in US

Defining Future RE Environment in Europe

NDDP
AGENDA

• The future environment for relative effectiveness evidence in Europe
• A comparison of the European and US environments
• Implications for drug development and evidence generation
EXPLORING THE FUTURE OF RE FOR DRUGS IN EUROPE
ELEMENTS AFFECTING THE FUTURE OF RE IN EUROPE?

Baseline factors
- Payers continue to face “austerity” pressures
- Decision making by Payer / HTA bodies remains at national / sub-national level
- Patient expectations continue to rise

Key Factors Assessed
- New pharmaco-vigilance regulation (PAES and PASS)
- Adaptive Licensing (AL)
- Assessment of clinical evidence by HTA bodies/payers at launch

Key Factors Assessed (continued)
- Demand for post-launch RE studies by HTA bodies/payers
- Coordination between regulatory and HTA bodies
- Infrastructures to conduct RE research
- Methodologies to analyse RE evidence
- Use of Patient Reported Outcomes (PROs)
- Relationship between FDA and EMA
- Personalised medicine
- Commissioning and funding RE studies
TOP TWO CRITICAL KEY FACTORS

Regulatory change:

New pharmaco-vigilance regulation enables the EMA to seek “efficacy” data in addition to “safety” (at first authorisation or post-authorisation) in order to inform a benefit-risk assessment of a medicine.

Adaptive Licensing: prospectively planned, flexible approach to regulation with iterative phases of evidence gathering to reduce uncertainties followed by regulatory evaluation and license adaptation.

SECOND TWO CRITICAL KEY FACTORS

Coordination between regulatory and HTA bodies:

Interaction between regulatory and HTA bodies can in principle cover one or more of:

- the offering of scientific advice both pre- and post-launch leading to
- the possible coordination and/or agreement on evidence requirements (e.g. type of study design and type of end points to be included)

HTA change:

Assessment of clinical evidence by bodies/payers at launch identifying incremental effectiveness of a new medicine (compared to current practice) based on clinical trial data and modelling techniques.

Demand for post-launch RE studies by HTA bodies/payers Studies requested by HTA bodies/payers to demonstrate benefits in real world setting.

Infrastructure and methods:

The extent to which:

- improvements in research infrastructures and in the availability of data are made
- robust methodologies to analyse evidence produced by RE studies will be developed and agreed by key stakeholders
Three scenarios, operating fundamentally on a logic of increasing European co-ordination.....

- **Scenario 1:** Status quo Little regulatory change. No HTA agreement on methods for clinical assessment, and post-launch studies requested in some countries. Limited regulatory and HTA coordination either pre or post launch.

- **Scenario 2** – Some changes Post-authorisation efficacy studies (PAES) implemented. Convergence of HTA methods for clinical assessment but HTA ability to request post-launch studies constrained by role of regulatory. Some regulatory and HTA coordination pre-launch

- **Scenario 3** – Major changes; high-trust environment Integrated regulatory system, including AL, applied to a variety of drugs. Convergence of HTA methods for clinical assessment and coordination for demand of post-launch studies (often linked to conditional reimbursement schemes). Joint regulatory and HTA thinking for pre-and post-launch.
SOME CHANGE SCENARIO “MOST LIKELY”

Regulatory:
• Post-authorisation efficacy studies (PAES) implemented
• CMA used as now in limited cases

HTA bodies/payers:
• Convergence of methods for clinical assessment
• Ability to request post-launch studies constrained by regulatory PAES role

Regulatory and HTA bodies/payers dialogue:
• Some coordination pre-launch but not post-launch

Infrastructures and methods:
• Increased use of disease registries in some countries
• Progress in EHRs
• Limited methods development
• Industry is responsible for financing and conducting studies
• Limited opportunity to identify subgroups/biomarkers pre-launch
MOVEMENT TOWARD HARMONIZATION IN EUROPE

Most Likely Scenario

- Coordination across HTA bodies in demand for P-L studies, often linked to CED, P4P schemes
- Greater HTA and EMA coordination pre-launch
- Disease registries in some countries, and progress in EHRs
- Post-authorisation efficacy studies (PAES) implemented
- AL applied to a variety of drugs
- Joint HTA and EMA coordination for pre-and post-launch

Most Conducive To RE Scenario

- Collaborations across large registries
- Full use of EHRs
- Good progress in methods
- Public-private partnerships have a major role

Copyright

Office of Health Economics
Research
COMPARING THE CER/RE EVIDENCE ENVIRONMENTS IN THE US AND EUROPE

Adrian Towse and Donna Messner
US CRITICAL KEY FACTORS IDENTIFIED -- DEFINITIONS

<table>
<thead>
<tr>
<th>TOP TWO CRITICAL KEY FACTORS</th>
<th>SECOND TWO CRITICAL KEY FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration of Health Systems: Extent to which hospitals, multispecialty care delivery and other services, and coverage become integrated into a comprehensive system for delivering care to members</td>
<td>Big Data: Advancements in technology and techniques to facilitate analysis and utilization of rapidly growing, large repositories of unstructured or semi-structured health information (incl. lab data, information on biospecimens, genomic or biomarker data, etc.)</td>
</tr>
<tr>
<td>EHR: Degree to which electronic health records are standardized, in terms of both nomenclature and interoperability, allowing accessibility for research purposes</td>
<td>Role of patients: The degree to which the activities of organized patient groups will impact drug development and expectations for CER</td>
</tr>
</tbody>
</table>
THREE RESULTING SCENARIOS

Three scenarios, operating fundamentally on a logic of increasing health care integration...

- in a fully integrated system, the provider bears financial risk for most health care services of a patient

• Higher integration scenario – high level of integration; prevalence of risk-based payment models moving towards capitated

• Moderate integration scenario – moderate level of integration; many patients in integrated systems but many still not

• Status quo scenario -- low integration. Fragmentation of payment methods; traditional fee-for-service model widespread. ACOs with incentive bonuses for quality metrics
MODERATE INTEGRATION SCENARIO “MOST LIKELY”

- **Integration**: Pop in integrated systems doubled (others in fragmented sys)
 - Within integrated systems, risk for care shifted to HC system away from traditional payers
 - More incentive to look at the long-term outcomes and costs for drugs; but ability to use their own data is partial
 - Contracting with ACOs largely on quality metrics; includes measures of cost
- **EMR**: Some interoperability in large systems or states; more standardization, but records of a many patients still not captured
- **Big Data**: Many data sources still poor quality, but increased opportunities
- **Patient role**: Organized patient groups build networks (PCORI PPRN)
 - work with investigators, statisticians to mitigate bias;
 - collect relevant clinical and patient-reported outcomes from a high proportion of their memberships;
 - embed clinical trials within registries (especially in the rare disease space)
MOVEMENT TOWARD INTEGRATION OF HEALTH SYSTEM IN THE US

- ACA and private payers driving investment in ACOs
- Increasing data systems ability to produce quality measures
- Risk-based payments move towards capitation
- Federal investments to improve research infrastructure/methods/processes
- Increasing willingness and ability to invest in EHRs and desire to reduce system costs
- Changing locus of decision-making, providing opportunities for new partnerships

Transition from most likely scenario to most conducive scenario
SIMILARITIES BETWEEN US AND EU MOST LIKELY SCENARIOS FOR COMPARATIVE EFFECTIVENESS RESEARCH (CER) AND RELATIVE EFFECTIVENESS (RE) EVIDENCE

- Cost pressures require increasing focus on efficiency and on value.
- Payers/Health Technology Assessment (HTA) bodies will impose greater demands for CER/RE evidence for access, preferential tier placement/favorable pricing; how does this:
 - work in my population?
 - compare with existing alternatives?
 - affect resource use/cost?
- Payers/HTA bodies will still require Randomized Controlled Trial (RCT) or Pragmatic Controlled Trial (PCT) -based evidence for initial market access.
- Progress on the development of Electronic Health Records (EHRs), patient/disease registries and on creating a more data rich environment.
- Food and Drug Administration (FDA) and European Medicines Agency (EMA) both seeking to achieve earlier licensing of products.
- Policies and incentives to achieve better vertical integration within health systems, together with greater data and evidence sharing between systems.
DIFFERENCES BETWEEN US AND EU MOST LIKELY SCENARIOS FOR COMPARATIVE EFFECTIVENESS RESEARCH (CER) AND RELATIVE EFFECTIVENESS (RE) EVIDENCE

- The US makes greater progress than the EU in creating a data rich environment and exploring the potential of Big Data: conducive for conduct of RCTs in only select systems; largely for higher quality observational research.
- Greater US policy focus on and investment in increased capacity to conduct CER. In the US payers/providers conduct Real World Evidence (RWE) research. In the EU, industry is expected to fund/collect RWE.
- EU reduces differences across (national) payer and HTA bodies evidence requirements.
- FDA has no interest in adaptive licensing while the EMA is seeking to implement this.
- EMA and HTA bodies demand active comparators. FDA does not demand active comparators.
- Structured scientific interaction between EMA and HTA bodies. No formal process to account for payer evidence needs in early FDA advice.
- US focus on patient-centered research prominent. In EU patient influence is a less important driver.
The future of comparative effectiveness and relative efficacy of drugs: an international perspective

Drug development takes place in a global marketplace, with the USA and Europe currently dominating the market. To ensure drugs are developed to the highest standards and that they provide clinical and economic benefits, a number of regulatory, economic, and ethical considerations must be addressed. These considerations include the need for robust and reproducible evidence, cost-effectiveness, and the potential for overuse.

In both the USA and the EU, there has been increased emphasis on the development of comparative effectiveness and relative efficacy research. This focus is driven by the need to improve the quality and durability of evidence that can be used to make informed decisions about the use of resources. Comparative effectiveness research (CER) is defined as research that compares the benefits and harms of different interventions or strategies for the same population, while relative efficacy research (REV) compares the effectiveness of different interventions for the same condition.

In the USA, the Centers for Medicare & Medicaid Services (CMS) have implemented a number of initiatives to promote CER. For example, the CMS has established a Center for Medicare & Medicaid Innovation (CMMI) to test and evaluate new payment and delivery models that can improve health outcomes and reduce costs. The CMS has also established a National Evidence-based Healthcare Act (NEHIA) to support the development of evidence-based guidelines and to improve the transparency and accessibility of evidence.

In the EU, the European Medicines Agency (EMA) has been instrumental in promoting CER. The EMA has published a number of guidelines and recommendations on CER, including the EMA's Guidance on the Evaluation of Comparative Efficacy of Medicinal Products.

In conclusion, the future of comparative effectiveness and relative efficacy research is likely to be shaped by a number of factors, including the needs of payers, patients, and healthcare providers, as well as the availability of resources and the regulatory environment. It is clear that a coordinated and collaborative approach is necessary to ensure that the development of evidence-based guidelines and the implementation of new payment and delivery models are effective and sustainable.

Futurescapes: evidence expectations in Europe for comparative effectiveness research for drugs in 2020:
http://www.futuremedicine.com/doi/pdf/10.2217/cer.15.7

Futurescapes: evidence expectations in the USA for comparative effectiveness research for drugs in 2020:
http://www.futuremedicine.com/doi/pdf/10.2217/cer.15.6

The future of comparative effectiveness and relative efficacy of drugs: an international perspective:
http://www.futuremedicine.com/doi/pdf/10.2217/cer.15.8
THE NDDP PROJECT – IMPLICATIONS FOR DRUG DEVELOPMENT

Adrian Towse
Before phase 3
Potential Value

Background
RWE on disease, treatments, care pathways, unmet need etc

During phase 3
Predict Value of new Medicine

Comparative Trials. Pragmatic Trials, giving information on effectiveness

More Focussed Context for current care and outcomes to inform initial assessments

Evidence Synthesis to combine all sources of information: RCT + PCT + OBS

After Launch
Confirm Value

Post Launch
RWE on: use of new medicine, relative effectiveness, longer term outcomes

How much can be done pre-launch?

Or should we get to Post-Launch sooner?

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no [115303], resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution.

www.imi.europa.eu
SOME RECENT CALLS FOR CHANGE
Barker urges industry to move to a “learn and confirm” model
Orloff et al. argued for a radical redesign to reduce development costs with (i) more use of biological, pharmacological, and statistical modelling and simulation to fine tune study requirements, and (ii) adaptive trial design
The President’s Council of Advisors on Science and Technology (PCAST) Report recommended reengineering the clinical trials system
Califf et al. also focused on the need for clinical trials to be integrated into the health care delivery system rather than research and delivery being regarded as separate enterprises.
EHRs provide a means for both identifying patients for recruitment into clinical trials and for following patients in clinical trials reducing the costs of implementing trial protocols.
PROBLEMS WITH THE CURRENT DRUG DEVELOPMENT PARADIGM

2030 The future of Medicine - Avoiding a Medical Meltdown
Dr. Richard Barker, MA, FRSM

Current medicines development path
- 8 - 10 years
- Pharmacovigilance
- Patient Access

I | II | IIIa | Review | HTA | Illb | IV
- First in Man
- Proof of Concept
- Regulatory Submission
- Approval
- Pricing Launch

Key Characteristics of current model
- Inflexible processes and methods
- Expensive, increasing data demands
- Lack of early alignment between key parties
- Segmented input & decision making
- Access needs not designed in
- Patient perspective not fully addressed

Key Milestones
- External activities
- Sponsor activities
A FLEXIBLE BLUEPRINT FOR MEDICINES DEVELOPMENT

New flexible blueprint for medicines development

- Exploratory R & D
- Review & design
- Confirmatory trials
- Submit & confirm approval
- Early access on condition of data collection
- Patient Access
- Studies to establish relative value

Key Characteristics of changed model
- Flexibility to design the process around the medicine
- Reduced bureaucracy
- Alignment on approach between regulators and innovators
- Single flow of learning, not fragmented
- Patients perspective and access needs designed in

Source: Barker, R. 2030 The Future of Medicine: Avoiding a Medical Meltdown. 2010
A NOVEL MODEL FOR CLINICAL DEVELOPMENT

Target discovery and validation
- Apply biomarkers, modeling and simulation and advanced statistical methodology
- Demonstrate PoC and establish dose selection

PoC Clinical Trials

Clinical Development
- Apply innovative tools and clinical trial designs such as adaptive or seamless studies
- Identify target patient populations and confirm optimal dose; establish the benefit/risk ratio

Target

PoC

Approval

Orloff et al. Nature Reviews Drug Discovery 2009
A STRATEGY FOR CER AND MARKET ACCESS

Phase I/II

Phase IIIa

Phase IIIb

Phase IVa

Phase IVb

Physiology RCTs

CER Trials/PCTs

Registries

Modeling/indirect comparisons

Feedback Loop

Claims data monitoring

Adapted from Schneeweiss et al. CPT 2011
WHAT IS NEW ABOUT THE ENVIRONMENT WE DESCRIBE?

- Greater acceptability of enrichment designs and surrogate endpoints for regulatory approval
- Patient-powered research networks and country-sponsored registries
- Selected pockets of healthcare systems and some countries with reliable mechanisms to track patients healthcare use across settings of care and longitudinally through clinically-rich electronic health records
- Greater harmonization between regulatory agencies and HTA bodies in Europe
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Design</td>
<td>A design that allows the modification of the trial and/or statistical procedures during the conduct of a trial, based on the review of interim data. The purpose of an adaptive design is to increase the probability of success without undermining the validity and integrity of the trial. (Chow et al. 2008)</td>
</tr>
<tr>
<td>Confirmatory Trials</td>
<td>As compared to the traditional approach to drug development that separates clinical development into sequential phases, an integrated model aims at improving the effectiveness of clinical development process by increasing flexibility and maximizing the use of accumulated knowledge. In this model, broader, more flexible phases leading to submission for approval are designated ‘exploratory’ and ‘confirmatory’. In the confirmatory phase, modern designs, tools and knowledge are applied to larger-scale studies with the goal of identifying the target patient population in which the drug is efficacious, establishing the benefit/risk ratio and confirming the optimal dose and dosing regimen. During this phase, innovative clinical trial designs such as adaptive or seamless studies compress timelines, improve dose and regimen selection, and reduce the number of patients assigned to non-viable dosing regimens. (Orloff et al. 2009)</td>
</tr>
<tr>
<td>Exploratory Research</td>
<td>See “Confirmatory Trials” for explanation of the model. During the exploratory phase of development, this model uses all available knowledge and tools, including biomarkers, modelling and simulation, as well as advanced statistical methodology. Trials are designed to determine proof-of-concept (Poc) and to establish dose selection to a level of rigour that will enhance the likelihood of success in the confirmatory phase. (Orloff et al. 2009)</td>
</tr>
<tr>
<td>Large Simple Trials</td>
<td>A prospective, randomized controlled trial that uses large numbers of patients, broad inclusion criteria, multiple study sites, minimal data requirements, and electronic registries. Its purpose is to detect small treatment effects, gain effectiveness data, improve external validity. (Peto et al. 1993)</td>
</tr>
<tr>
<td>Pragmatic Clinical Trial</td>
<td>PCTs are randomized controlled trials that can rigorously evaluate the risks, benefits, and costs of treatment interventions as they occur in “real-world” settings and for heterogeneous, “real-world” patients. Results can be very relevant to healthcare decision makers. (Chalkidou, et al. 2012).</td>
</tr>
<tr>
<td>Proof of Concept Studies</td>
<td>See “Confirmatory Trials” for explanation of the model. During the exploratory phase of this model, trials are designed to determine proof of concept (PoC) and to establish dose selection to a level of rigour that enhances the likelihood of success in the confirmatory phase. (Orloff et al. 2009)</td>
</tr>
<tr>
<td>Registry</td>
<td>An organized system that uses non-experimental study methods to collect uniform data (clinical or other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes.</td>
</tr>
<tr>
<td>Sequential Cohort Studies</td>
<td>Sequential cohort design begins tracking utilization and resource use through administrative and electronic health record data as soon as a drug gains market access. (Schneeweiss et al. 2011). Sequential cohorts are defined for calendar intervals, such as quarters, in order to balance temporal selection bias that may occur with new use of a drug (e.g., it may be used only in most difficult to treat population at the outset).</td>
</tr>
</tbody>
</table>
PRODUCT ARCHETYPE # 1: BREAKTHROUGH DRUG

A new breakthrough drug of relatively high cost that is effective in a small population of patients who suffer from a common disease but have a specific biomarker identified by a companion diagnostic test.

“Supportive data in broader population may be observational (if rigorous) with a strong, plausible biologic case for a broader population.”

“If diseases are common, we expect more rigor.”
(Demand for RCTs in broader population may depend on therapeutic area & available treatments)

HTA bodies – would expect ‘prospective’ observational study

Payers – would likely restrict coverage to population with predictive marker. May use own data to evaluate “indication creep.”

ACO – would consider partnership to study in broader population.
A new drug that is a breakthrough for treating patients who suffer from a common disease, but has been studied only in a small population that has a specific predictive biomarker identified by a companion diagnostic test.

Example:

- Lipid-lowering drug studied in patients with familial hyperlipidemia
- Ultimate potential use would be statin users in the general population
NEW DRUG DEVELOPMENT PARADIGM FOR 2020: MOST LIKELY SCENARIO FOR CER/RE

Archetype 1: Breakthrough drug studied only in small population with biomarker

Key Features
- Patient/payer engagement early to ensure outcomes reflect those of importance to them
- Smaller targeted trial brings drug to market earlier
- Bayesian/adaptive designs to improve efficiency of trial development throughout the life cycle with clear decision points after each round of evidence development
- Second trial in broader population is large simple trial with focused question
- EMA requirements for post-authorization efficacy studies can be built into the second trial
- Sequential cohort studies initially used to track off-label use; data used to design second trial
DRUG DEVELOPMENT PROGRAM FOR BREAKTHROUGH DRUG STUDIED ONLY IN A SMALL POPULATION WITH BIOMARKER: MOST LIKELY SCENARIO

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Phase of Drug Development</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling studies/Enrichment,</td>
<td>Exploratory Research/Confirmatory Trials</td>
<td>Define the populations in which impact on outcomes is greatest;</td>
</tr>
<tr>
<td>Adaptive Design Trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observational Studies/Registry</td>
<td>Exploratory Research</td>
<td>Understand patterns of use in broader population, begin to understand subgroups for additional indications; Patient registry opportunity to explore associations of biomarker with outcomes identify population for enrollment</td>
</tr>
<tr>
<td>RCT</td>
<td>First pivotal trial in biomarker positive population</td>
<td>Early market access with small targeted trial measuring surrogate outcome</td>
</tr>
<tr>
<td>Observational Studies</td>
<td>Post-regulatory for narrow population</td>
<td>Partner with payers/patient advocacy groups to help them ensure use is consistent with label; better design second trial</td>
</tr>
<tr>
<td>LST</td>
<td>Second pivotal trial</td>
<td>Streamlined data collection to enable access to broader population, safety, hard outcomes</td>
</tr>
<tr>
<td>Sequential Cohort Studies</td>
<td>Post-regulatory for broader population</td>
<td>Continue partnerships to better define resource/outcome impact for pricing differential</td>
</tr>
</tbody>
</table>
A new drug in a crowded, competitive market for a common chronic disease with a demonstrated effectiveness similar to its competitors. The manufacturer has identified several potential subgroups where the drug may be more effective; however, those subgroup analyses were underpowered and not planned a priori. Of the subgroups examined post hoc, one group was patients who did not improve on their initial therapies.

US payers: new drugs with similar effectiveness as competitors would be tiered at the same level

Prefer RCT data with prospectively identified subgroups sufficiently powered to be considered for premium pricing: “Won’t accept underpowered subgroup analysis from pharmaceutical industry other than hypothesis generating for more pharma studies.”

Peer-reviewed, prospective observational cohort studies may be acceptable, with these caveats:

- Observational study should follow individuals from original drug trial, compare patients on competitor drugs
- Subgroup findings should be consistent with the existing biological argument and supportive of existing knowledge

Those not accepting observational studies concerned about manufacturers providing the evidence, publication bias and underpowered subgroup analysis
PRODUCT ARCHETYPE #2: NEW DRUG IN A CROWDED, COMPETITIVE MARKET

A new drug in a crowded, competitive market (including generic alternatives) for a common chronic disease with a demonstrated efficacy similar to its competitors. The manufacturer has identified several potential subgroups where the drug may be more effective; however, those subgroup analyses were underpowered and not planned a priori. Of the subgroups examined post hoc, one group was patients who did not improve on their initial therapies.

Example:
Rheumatoid Arthritis drug that has the potential to demonstrate superior efficacy in patients who have failed treatment with market leader
NEW DRUG DEVELOPMENT PARADIGM FOR 2020: MOST LIKELY SCENARIO FOR CER/RE

Archetype 2: Crowded competitive market, studied in large population, with potential superiority in subgroup

New Seamless Framework

Patient/Payer Engagement

Exploratory Research
Modeling, simulation, Proof of concept trials

Confirmatory Trials
Adaptive designs

Pivotal RCT

Indirect comparisons

Sequential Cohort Studies
Approval
Reimbursement
Preferred Pricing

Sponsor Activities
Partnerships

Key Features
- Patient/payer engagement early to ensure outcomes reflect those of importance to them
- Adaptive designs not just for dosing, but for subgroups with clear decision points after each round of evidence development
- Use of observational data helpful to identify subgroups
- Some potential to partner with payers/health systems for adaptive access in collecting observational data demonstrating improved use of health care outcomes/resources/cost
- EMA requirements for some post-authorization efficacy studies met through observational data
DRUG DEVELOPMENT PROGRAM FOR A DRUG IN A CROWDED COMPETITIVE MARKET, STUDIED IN LARGE POPULATION, WITH POTENTIAL SUPERIORITY IN SUBGROUP: MOST LIKELY SCENARIO

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Phase of Drug Development</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling/simulation indirect comparisons</td>
<td>Exploratory Research</td>
<td>Identify appropriate comparators; target effect sizes;</td>
</tr>
<tr>
<td>Adaptive designs, RCTs</td>
<td>Confirmatory trials</td>
<td>Begin to understand subgroups with potential for larger effect sizes</td>
</tr>
<tr>
<td>RCT (LST?)</td>
<td>Pivotal trial</td>
<td>Come to market with the broadest potential target group</td>
</tr>
<tr>
<td>Open label follow up</td>
<td>Post-regulatory</td>
<td>Follow patients originally randomized and compare with observational cohorts to populate indirect comparison models</td>
</tr>
<tr>
<td>Indirect comparisons</td>
<td>Post-regulatory</td>
<td>Meet diverse payer needs for different comparators</td>
</tr>
<tr>
<td>Sequential Cohort Studies</td>
<td>Post-regulatory</td>
<td>Adaptive access partnerships to identify subgroups for improved tier placement, premium pricing; meet EMA PAES</td>
</tr>
</tbody>
</table>
WHAT TYPE OF CER/RE SHOULD DRUG COMPANIES INVEST IN BY 2020, AT WHAT STAGE OF DRUG DEVELOPMENT?

Payers will still demand randomized studies

- Patient registries will enable better design of trials, faster enrollment, drug companies can help facilitate their development
- Adaptive designs will be more acceptable and will improve efficiency of early phase drug development
- Indirect comparisons will be acceptable when there is biologically plausibility in a crowded market
- A complementary mix of observational studies/modeling to inform trial design and RCT/LSTs should be planned throughout the drug development cycle
WHAT TYPE OF CER/RE WILL EXTERNAL ENTITIES (E.G., FEDERAL, HTA BODIES, HEALTH PLANS) BE INVESTING IN OR EXPECTING BY 2020 THAT WILL IMPACT THE BUSINESS MODEL FOR DRUG DEVELOPMENT?

Federal bodies will invest in methods standards that will help improve quality of observational research;

Health plans/HTA bodies will want pragmatic trials that include: 1) active comparators compared to relevant treatment options; 2) in populations of end users; 3) with clinically meaningful endpoints that answers the question, “How does this new drug impact our bottom line?”

Health plans and some countries in Europe will be collecting more post-market observational data to better understand this.

Drug companies will need to be proactively partnering with health systems, patient and clinician organizations that maintain registries, and state-run registries to enable more efficient, randomized real world trials.
IN MOVING TO THE NDDP, WHAT ARE THE CHALLENGES FOR INDUSTRY?

• **Learn** to do large, cheap simple trials
• **Participate in the development of data policies and architecture** to support more efficient large simple trials
• **Understand when payers are aligned** about a gap in evidence that needs filling
• **Determine the product archetype** in advance; does it target “too broad” a market (archetype 2) or “too narrow” (archetype 1) based on the developmental decisions/compromises that need to be made
• **Define** the questions that need to be answered at each phase of development – the archetype will help drive an evidentiary strategy
• **Conduct more exploratory modeling** Have more discipline about killing projects and more realism about the target population
REFERENCES

• President's Council of Advisors on Science and Technology. Report to the President on Propelling Innovation in Drug Discovery, Development and Evaluation (Office of the President of the United States, Washington, DC, September 2012).
• Schneeweiss et al. Clinical pharmacology & Therapeutics 90: 6 December 2011. Assessing the Comparative Effectiveness of Newly Marketed Medications: Methodological Challenges and Implications for Drug Development